Au nanoparticles in carbon nanotubes with high photocatalytic activity for hydrocarbon selective oxidation.
نویسندگان
چکیده
High-efficiency and high-selectivity catalytic oxidation of alkanes under mild conditions with air is a major aim of current catalytic chemistry and chemical production. Despite extensive development efforts on new catalysts for cyclohexane oxidation, current commercial processes still suffer from low conversion, poor selectivity, and excessive production of waste. Here, we present the design and synthesis of gold nanoparticle/carbon nanotube (CNT) composites for high-efficiency and high-selectivity photocatalyst systems for the green oxidation of cyclohexane. Remarkably, Au nanoparticles confined in carbon nanotubes (Au-in-CNTs) are photocatalytically active for the oxidation of cyclohexane with 14.64% conversion of cyclohexane and a high selectivity of 86.88% of cyclohexanol using air and visible light at room temperature. Given its diversity and versatility of structural and composition design, gold nanoparticle/CNT composites may provide a powerful pathway for the development of high-performance catalysts and production processes for green chemical industry.
منابع مشابه
Multi-walled carbon nanotubes supported palladium nanoparticles: Synthesis, characterization and catalytic activity towards methanol electro oxidation in alkaline media
Palladium nanoparticles supported on multi-walled carbon nanotubes (Pd/MWCNTs) have been synthesized using a modified polyol reduction method and its performance in methanol oxidation reactions has evaluated. The morphology of palladium on MWCNTs was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The catalytic performance of synthesized catalyst ...
متن کاملNitrogen functionalized carbon nanostructures supported Pd and Au-Pd NPs as catalyst for alcohols oxidation
Two different carbon nanotubes (CNTs) PR24-PS and Baytubes were functionalized by oxidation with nitric acid and further amination with gaseous NH3. Thus Au and Au-Pd nanoparticles were prepared by PVA/NaBH4 system and anchored on the surface of pristine CNTs and NCNTs (Nitrogen functionalized carbon nanotubes). TEM analysis revealed that the introduction of nitrogen functionalities improves th...
متن کاملSynergistic Effect of ZnO Nanoparticles and Carbon Nanotube and Polymeric Film on Electrochemical Oxidation of Acyclovir
A simple and selective carbon paste electrode has been developed for the electrochemicaldetermination of acyclovir (ACV). This electrode was designed by incorporation of multiwalledcarbon nanotubes (MWCNTs) and ZnO nanoparticles into the carbon paste matrix,and then poly (o-aminophenol; OAP) film were subsequently electropolymerized on it. Thesurface structure of nanoparticles were characterize...
متن کاملSynergistic Effect of ZnO Nanoparticles and Carbon Nanotube and Polymeric Film on Electrochemical Oxidation of Acyclovir
A simple and selective carbon paste electrode has been developed for the electrochemicaldetermination of acyclovir (ACV). This electrode was designed by incorporation of multiwalledcarbon nanotubes (MWCNTs) and ZnO nanoparticles into the carbon paste matrix,and then poly (o-aminophenol; OAP) film were subsequently electropolymerized on it. Thesurface structure of nanoparticles were characterize...
متن کاملSynthesis and Characterization of Anatase-coated Multiwall Carbon Nanotube for Improvement of Photocatalytic Activity
Sol-gel technique was used to coat multiwall carbon nanotubes (MWCNTs) with anatase titania to increasing the surface area and improve the photocatalytic activity of TiO2. Room temperature ballistic conduct of MWCNT combined with semiconducting behavior of anatase brought about a photocatalytic improvement of ~37 % with respect to the highest methyl orange decolorization flair. For characteriza...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 43 34 شماره
صفحات -
تاریخ انتشار 2014